阅读历史 |

第二百四十四章 黎曼猜想与欧拉乘积公式 (第三更) (第1/2页)

加入书签

第243章黎曼猜想与欧拉乘积公式(第三更)

陈冰作为北大数学系的教授,水平真的是相当之高。

从引入话题开始,慢慢的深入,刚开始几个队员们还听的很轻松,岳豪时不时还配合说出几个梗来。

但是越往后面,大家听懂的压力就越来越大。

每个人拿出自己的笔纸开始记录。

偶尔陈冰会提出几个简单一点的问题,大家也会踊跃的回答,但是后面的几个难题,所需要思考的时间也越来越多。

6个学生的额头不由得都流出一丝冷汗。

这就是传说中的聊聊天??

这还不如做几道i的训练题好吧??

这种级别的猜想,就算他们真的是小数学家,也实在是承受不住呀!

终于,在两个小时的摧残之下。

陈冰满怀笑意的结束了这一次“友好的聊天”。

苏牧揉了揉太阳穴,他的脑袋现在还在高速运转着,纸上的公式已经密密麻麻记满了。

......

7月14日。

i第一场考试正式开始!

除了监考老师变成了外国人,考场变的宽敞了一些之外,苏牧倒是没有觉得其他特别大的变化。

苏牧现在所做的这个份试卷的题目是中文版,由副领队何一杰进行翻译。

在国际赛中,领队或者副领队其中一人会比选手更先接触到试题,但是直到考试结束之前,严禁接触过试题信息的领队和其他工作人员与学生有通信。

曾经90年代的时候,据说朝鲜领队私自离开领队驻地,最终结局被取消了参赛资格。

当然,这些都跟苏牧没什么关系。

三道题目。

三张试卷。

每题七分。

他微微定了神色,朝着今天的题目看去。

第一个题目是几何体,倒是挺符合近几年i的规律。

“设i为三角形abc的内心,p是三角形内部的一点。”

“满足:∠pba+∠pca=∠pbc+∠pcb。”

“证明:ap≥ai,并说明等号成立的充分必要条件是p=i。”

这道题并没有给出图形,而是需要考生自己去画图。

主要考察的是平面几何里面的三角形和圆。

苏牧有些意外,看来陈冰说的的确没有错,i的试题并没有想象中的那么困难,反而这道几何体要比集训队里的稍稍还要简单一些。

直接设∠a=α,∠b=β,∠c=γ,因为∠pba+∠pca+∠pbc+∠pcb=β+γ

所以可以得知∠pba+∠pcb=(β+γ)/2

由于点p、i位于边bc的同侧,故点b、c、i、p、四点共圆,即点p在三角形bci的外接圆。

记n为三角形abc的外接圆,则圆心n的bc弧的中点,即∠a的平分线ai与交点。

又在三角形ap,有ap+paai+iai+pbr />

固ap≥ai,即等号成立的充分必要条件是p位于线段ai上,即p=i。

前前后后只花了五分钟,苏牧就完成了这道题目的解析。

七分到手,性价比超高。

他原本还考虑着需不需要把数学升到十一级,但是看着这么简单的题目,突然感觉好像不用浪费技能点。

旁边有个土耳其的老哥正在抓耳挠腮,苏牧有些惊讶。

这么简单的题目居然都要想这么久吗??

这个题目应该充其量只有c的水平吧?

很快,苏牧把这张试卷放到最下面,拿出了第二题的试卷。

第二道题稍微要长上一些。

考察的是关于正多边形的分割。

“这道题也很简单呀。”

苏牧前前后后看了两遍,这个题目的描述的确很长,但是解答的过程却要更加简洁一些。

“这就是所谓的i???”

苏牧咬了咬笔头,很是为难。

他宁愿题目出难一点,他好发挥。

但是题目出的这么简单,他反而不好下手了。

他还有技能点没用呢!

他还有极限运算这个技能没有发挥呢!

他都准备好大展身手,然后回去酒店好好睡一觉补充睡眠了!!

但是现在看这种情况,完全用不到苏牧去超常发挥。

据说今天的题目难度为e、c、a,但是这个e和这个c也太简单一点了吧,如果i仅仅只是这个水平,按理来说拿到满分应该问题不大啊!!

呃。

好像华夏队在奥赛上满分的几率的确挺高的。

苏牧突然一下子想到了这一点,才稍微释然了些。

难怪陈冰看向自己的眼神一直都很稳定,重心都放在了其他几个队友身上,

↑返回顶部↑

书页/目录